
An addition theorem for the Coulomb function

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1976 J. Phys. A: Math. Gen. 9 905

(http://iopscience.iop.org/0305-4470/9/6/011)

Download details:

IP Address: 171.66.16.108

The article was downloaded on 02/06/2010 at 05:43

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/9/6
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Php. A: Math. Gen.. Vol. 9. No. 6, 1976. Printed in Great Britain. @ 1976 

addition theorem for the Coulomb function 
M Pauli and K Alder 

Institut fiir Physik, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland 
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Abstract. An addition theorem is derived for the regular and irregular Coulomb functions 
by means of the symmetry properties of the Coulomb problem in analogy to that for the 
spherical Bessel functions. The coefficients which enter in the addition theorem are closely 
related to 9 j  symbols with complex angular momenta. For the computation of these 
coefficients a complete set of recurrence relations is given. In addition, some useful 
relations are presented for the Coulomb function in configuration space as well as in 
momentum space. 

1. Introduction 

The Coulomb function and the closely related Whittaker function provide a suitable 
basis for the description of scattering processes in atomic and nuclear physics as well. 
They have been extensively discussed in the literature (Whittaker and Watson 1927, 
Buchholz 1953, Hull and Breit 1959, Slater 1960, Abramowitz and Stegun 1965). In 
this paper we present new relations for the Coulomb functions which can be useful in 
the theory of nuclear reactions. There, for certain purposes a good approach is to 
expand the Coulomb function, describing the motion of a composite particle having two 
components in the electrostatic field of a nucleus, in terms of products of functions 
which depend on the position vectors p1 and p2 of the two components. Therefore, it is 
OUT aim to derive an addition theorem where the Coulomb function depending on 
Pl+pZ is expressed in terms of Coulomb functions of p1 and p2. 

There exist several ways of finding an addition theorem for an arbitrary function. 
Obviously, one can try to write the function of p1 +p2 as a three-dimensional Taylor 
series. But the disadvantage of this method lies in an asymmetric treatment of p1 and 
Pz; one of them (e.g. p2) plays the role of a shift vector, while the other (e.g. pl) specifies 
the shift origin. Another operator method has been f o z  by Sack (1964a, b, c). It 
allows one to write a function of the form f(pl +p2)Ylm(pl +p2) in terms of functions of 
PI and p2. A basically different approach is to expand the original function in terms of a, 
complete set of easily separable functions. Since the only function F possessing the 
Property F(pl +p2) = F(pl)F(p2) is the exponential function, one must evidently write 
the Original function as a Fourier integral. The vectors p1 and p2 are now treated 
sWetrically, but only at the price of leaving the original basis. On the other hand, we 

expand the exponentials (i.e. the plane waves) in terms of a complete set of 
Oflhogonal functions which are better adapted to the original basis than the plane 

Sawaguri and Tobocman (1 967) have chosen the harmonic oscillator functions 
new basis. We propose to use Coulomb functions instead. 

905 
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For some special functions there exists an addition theorem in the desired fom, e.g. 
for the power function (Sack 1964) and for the spherical Bessel and Hankel fundons 
( D ~ O S  and Maximon 1965, Buttle and Goldfarb 1966). These addition theorem can 
be deduced in the ways mentioned above. The relatively simple form of the addition 
theorem for spherical Bessel functions can be explained by means of the underlying 
symmetry properties of these functions. The spherical Bessel functions are  solutio^ of 

a Schodinger equation with constant potential, which is invariant with respa to 
translations in three-dimensional space. Therefore, the Bessel functions are closely 
connected to the irreducible representation of the translation group in thee- 
dimensional space, and this gives rise to the simple structure of the addition 
theorem. The Coulomb problem, on the other hand, is invariant under a more cornph- 
a ted symmetry group, namely the rotation group in four dimensions, as Fock h a  
shown (Fock 1935). From this invariance an addition theorem for the regular and 
irregular Coulomb functions in the desired form can be derived analogously to the 
spherical Bessel functions. In the following sections we present the relations used in the 
derivation of the addition theorem. In 0 2 some general features of the coulomb 
function in configuration space are given. In 0 3 the Coulomb functions in momentum 
space are introduced, which are closely related to the so called hyperspherical functions, 
These functions are extensively discussed in 0 4. Finally, the addition theorem for the 
regular and irregular Coulomb function is given in 00 5 and 6. 

2. The Coulomb function in configuration space 

The motion of a non-relativistic particle of charge Zle, mass M and energy E in the 
Coulomb potential Z2e/r is described by the Schrodinger equation 

Since the Coulomb potential is spherically symmetric we can give a particular solution 
of this equation in the form 

where Yl,(8, 4 )  is the spherical harmonic (Edmonds 1957). The radial wavefunction 
udr) satisfies the following differential equation: 

where the parameters are defined by 

ZZ2e 
77 =2 

p = kor; k o = ( 3 l ’ * ;  h ko 
(2.4) 

For E > O  the Coulomb parameter 77 is real, negative for attractive and positive for 

repulsive potentials. Solutions of equation (2.3) may be expressed as SUitablY nor- 
malized combinations of the two linearly independent Whittaker fundons 
w-i,i+;(-2ip) and W ~ , J + ;  (2ip) (Buchholz 1953). As mentioned in the introduction, 
the Coulomb functions are Whittaker functions, normalized such that, for P + the 
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amlute value of the amplitude equals 1. Accordingly, we define Coulomb functions 
$)(q, p )  and H!-)(q, p )  which behave asymptotically like incoming and outgoing 
waves, in terms of the irregular Whittaker functions: 

Hjf’(q, p)-exp(i[p-q In 2p-$7r(l+l)+alu (2.5a) 

(2.5b) = exp[$.m) +iq - i$?c(I + 1 ) ~ - ~ , , , ~ + ;  (-zip) 

and 
H:-)(q, p )  - expI-i[p - q In 2p -$?c(l+ 1) + qa (2.6a) 

=exp[$.m)-ioi +i$a(i+ 1)]~,,,1+;(2ip). (2.6b) 

Here, the Coulomb phase-shift q is given by 

= r(l+ 1 +iq) 
r(l+ 1 -iq)’ (2.7) 

At this point we note that the definitions (2.5) and (2.6) of HY’ and III-’ differ from the 
corresponding definitions of Hull and Breit (1959) by factors i and -i, respectively. 
According to our definitions, for 17 = 0 the functions are connected with the correspond- 
ing spherical HankeI functions? hY)(p) by 

HY’(0, p )  = phjf’(p). (2.8) 
The functions Hjf) and H-) are linearly independent solutions of equation (2.3) 
satisfymg the relation 

(2.9) H(+) * 
1 (17 , P*)  = H!-)(% PI*. 

They are irregular functions with the behaviour p-’ at the origin. By a linear 
superposition of Hjf’ and H-’ we get the regular solution 

Fdq, P )  =t(Hjf’(q, P )  +III-’(q, P)). (2.10) 

This function behaves like sin(p - q In 2 p  -&rZ + al) for p + o;, and is connected with the 
regular Whittaker function Mi,,,~+4(2ip) in the following way: 

(2.1 1) 

(2.12) 

fie regular Coulomb function FI( q, p )  satisfies the following orthogonality relations, 
derived in appendix 2: 

( 2 . 1 3 ~ )  

(2.13b) 

n e  functions hY)(p) and hi-)(p) are denoted by hj’)(p) and hj2’(p), respectively, by Abramowitz and S t e w  
(1965). 
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There exist many recurrence relations for the Coulomb functions and the mwer 
functions, for which we refer to the literature (Buchholz 1953, Abramowik and 
Stegun 1965, Slater 1960). 

3. The Conlomb functions in momentum space 

We get the Coulomb functions in momentum space (Guth and Mullin 1951) by Fourier 
analysing the solution of equation (2.1): 

+(r) = I dk +,,(k) eikr 

with 
(3.1) 

Here we have introduced a cut-off factor e-cr in order to define the integration as r i 03. 

The transformed Coulomb function with momentum p satisfies the following 
Schrodinger equation, which now is an integral equation: 

Expanding the solution of this equation in partial waves 

+p(k) =E e'"'*h?, k)YL(iO)Ylm(i), (3.4) 
lm 

we obtain the regular Coulomb function Ql(q,  k) in momentum space (Dolinskii and 
Mukhamedzhanov 1965, Anni et a1 1972) as 

exp[iq arg(-2ekoi+ k2 -k~+E2~1  
2 
77 k(k - ko-ie)(k + ko-ie) 

- - -- - 

(3.54 

Here Q%Z) denotes the Legendre function (Abramowitz and Stegun 1965) of *e 
second kind. Naturally, these formulae have to be taken for E + O+. If we go to this 
limit, we can write 

(3.6) 
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where the symbol &(TI) means 

e- x < l  k 
k0 

x =-. (3.7) 

The behaviour of the Coulomb function near the logarithmic branch point k = ko is of 
&e following kind: 

At the points k = 0 and k = ~3 the Coulomb function t,+(q, k )  has the form 

(3.9) 

4. me spherical functions in four dimensions 

As Fock has discovered in 1935, the ‘accidental’ degeneracy of the bound state levels of 
the hydrogen atom comes from a hidden symmetry of the Coulomb system, namely the 
symmetry with respect to the rotation group O(4) in four-dimensional space. According 
to Fock all the discrete states of the hydrogen atom are described by the irreducible 
finite-dimensional representations of the group O(4). As basis functions of these 
representations one can utilize the spherical functions defined on the four-dimensional 
sphere (Dolginov 1956, Dolginov and Toptygin 1959, Dolginov and Moskaiev 1959>, 
also called hyperspherical functions. On the other hand, the continuous states of the 
hydrogen atom can be given in terms of the irreducible infinite-dimensional representa- 
tions of the homogeneous Lorentz group 0(1,3) (Perelomov and Popov 1966). It has 
been shown by Dolginov and Toptygin (1959) that an analytical continuation of the 
spherical functions provides the set of functions which forms a canonical basis for the 
infinite-dimensional representation of the Lorentz group. The properties of the 
hyperspherical functions have been investigated in detail by Dolginov and collaborators 
(1956, 1959) and by Perelomov and Popov (1966). Bander and Itzykson (1966a, b) 
have established the corresponding relations for the n-dimensional case. In the 
following we recapitulate those features of the spherical functions which we shall need 
for the subsequent sections. 

Following Fock, the invariance of the Coulomb problem with respect to the 
symmetry groups mentioned above is put into evidence by embedding the three- 
dimensional momentum space in a four-dimensional space. This is done by a stereo- 
graphic projection, by which the original momentum space is projected on a four- 
dhensional sphere for E < 0, or on a two-sheeted hyperboloid for E > 0; Let U be an 
arbitrary point in four-dimensional space with projection U in momentum space and 
fourth component u0. The norm of U has to be invariant with respect to the symmetry 
W U P  and hence it is defined as 

E<O (4.1a) U =uo+u 

u 2 = u o - U  2 2  E>O. (4.lb) 

2 2 2  
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If the four-dimensional sphere and the hyperboloid, respectively are given by u 2 =  

then the point p in the original space corresponds to the point , 

FP; 2PoP upper sign E < 0 
lower sign E > 0 

2 

(4.2) 

with po = (2M(El)”2. 

space correspond to p and p f ,  respectively then 
We s h d  need the following relations. If the points U and U’ in the fom-&ensiond 

( U  - uf)2p; J U - u’J2p; 
( p - p ’ ) 2 =  *(1 T U o ) ( l  Tu;)  = 11 i uo[ 11 F u y  

where d3p(u) is the surface element. We define the function 

(4.34 

(4.3b) 

(4.4) 

which satisfy the following equations (Bander and Itzykson 1966), derived from 
equation (3.3): 

E<O (4.54 

(4.5b) 

withE(u0)=+1 for u o 3 l  andE(uO)=-l for ~ ~ s - 1 .  Theinvarianceof equation(4.5) 
with respect to the groups O(4) or 0(1,3) is obvious. 

Solutions of equation (4.5b) are the hyperspherical functions Vqlm(u)  which are 
closely related to the irreducible representations of the homogeneous Lorentz group 
0(1,3). Introducing in the usual way the angles on the hyperboloid: 

uo=cosha; 

u3 = sinh (Y cos 6 ;  

u1 =sinh a sin 8 cos 4; u2 = sinh a sin 8 sin 4 

d3p(u)=sinh2a da sin 8 de  d4, (4.6) 

The spherical harmonic Y (e, 4) satisfies the normalization condition 

Yl,(i-h)Y&(fY) = s(a-nl) 
dln Ylm(i2)Y&JCl) = 

(4.7) 

(4.8~) 

(4.8b) 

where 6(i-h-flf) is the ‘6 function’ on the three-dimensional sphere. The fundons 
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n,,(a) are given by a hypergeometric function (Perelomov and Popov 1966) 
' /2[q2(q2+1) .  . .($+I 2 )] l j 2  

(sinh a)' 
'IT (2Z+ l)!! 

(4.9) 

After a quadratic transformation of the 2F1 function it is easily seen that the &(a) are 
related to the Legendre functions of the second kind: 

with p/po = tanh l a  for 0 S p/po < 1 and po/p = tanh $a for p/po > 1. By means of 
equations (4.10) and (3.6) the connection between the hyperspherical function II,Ja) 
and the Coulomb function in momentum space can be obtained. The following 
relation: 

d 1+1 
(4.11) n,,(a) = [iW2(72+ 1) . . . ( q 2 +  I 2 )I -1/2 (si& a)'(-) cos T a  

d cosh a 

can be used to get immediately the explicit expressions 

(4.1 1 a)  

(4.1 1 b)  

sin qa q - 1 1 
n'2(")= (:) ' I2[(v2+ 1)(q2+4)]1/2 a[ ' ( sinh'a 

+377 cos 7p- sinh a 

fie n,,(a) have the recurrence relations: 

(4.11d) 

7 + 2  coth a---- d a  sinh2a 
(4.13) 
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and the closure relation 
(4.14) 

(4.15) 

where Shyp is the ‘6 function’ on the hyperboloid. This closure relation is derived from 
the addition theorem of the hyperspherical function 

(4.16) 

with uu‘ =cosh a. 

expansion) derived by Dolginov and Toptygin (1 959): 
The hyperspherical functions possess a multiplication theorem (Clebsch-Gor& 

(4.17) 

where B(7,  ql,  az) is given by 

1 
B ( B  7711 7/21 = -7 (W 

sinh 7rq sinh q1 sinh m2 
X 

c o s h M ~ + ~ I + ~ 2 )  cOsh4d77-771-772) cosh$r(77-771 +q2) cosh ; ~ ( T / + T I - T ~ ) .  

(4.18) 

The symbol [? ZT;], hereafter denoted as the O( 1,3) coefficient, is related to the Wigner 
9j symbol with complex angular momenta ji by 

The complex angular momenta ji are connected with the Coulomb parameter rli by the 
relation 

(4.20) 

The 0(1,3) coefficient is invariant under a permutation of its columns and it is 
independent of the sign of the parameters qi. It can be factorized in the following way: 

2ji + 1 = iqi. 
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n e  reduced coefficient E: 7,’ 7 3  considered as a function of Q, q1 and 7, contains no 
sigularities. It is a real function if the parameters qi are real or purely imaginary. 

In general, the 0(1,3)  coefficients or the 9j symbols are complicated functionsof the 
angular momenta, and their explicit computation is rather laborious. If one of the li 
equals zero, the 9j symbol reduces to a 6 j  symbol for which closed formulae are known 
@bonds 1957). Otherwise, it is possible to give explicit expressions for the lowest I 
indices only (see appendix 1). For the general case the calculation of the 9j symbols 
with complex arguments as a sum over 6 j  symboIs (Dolginov and Toptygin 1959, 
Dolginov and Moskalev 1959) is not practical for numerical calculations. However, 
there exist recurrence relations for the 9 j  symbols ( h a  et al 1954, Matsunobu and 
Takebe 1955), which can be extended by analytic continuation to complex angular 
momenta ji. Combining the recurrence relations of the 9j symbols with those of the 
hyperspherical functions, we get two types of recurrence relations for the 0(1,3)  
coefficients: the ‘maximal’ recurrence relation (1, = 1 + I * ) ,  

+(y [(I, + 1)( Il  + 2) + ( I2 + 1)( l2 + 2) - I( 1 -t 1) + 7: + 7); - q2 + 13 

and the ‘general’ recurrence relation 

c: 7: ;:I ‘(21, + 1)(21, + 1)[ 1 1 ( 1 1 +  1) + l2(1, + 1) - Z ( I  + 1) + 7): + 7); - qz + 11 
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~f one of the angular momenta li equals zero, we have a three-term recurrence relation, 
directly derived from the recurrence relation of the 6 j  symbols (Edmonds 1957): 

--{2Z(l+ 1 1)+7&++$+ 1}[ 77 771 772 ] 
2 0 1  

This set of recurrence relations allows for an easy computation of all 0 ( 1 , 3 )  CO&- 
bents. First, the 'maximal' coefficients with 1, = 1 + 1, are computed with equation 
(4.22), and the remaining ones are obtained by successive application of the 'general) 
relation (4.23). The starting values needed €or the 'maximal' recurrence relation are 
given in appendix 1 .  

5. The addition theorem for the regular Coulomb function 

After these introductory sections, let us now derive the addition theorem for the regular 
Coulomb function, multiplied by the spherical harmonic with the same index I :  

fdq, P)Gm(fi> 

i.e. we want to represent the Coulomb function of the argument lpl= Ipl fp,) in terms of 
products of Coulomb functions depending on the arguments p1 and p 2 ,  respectively. For 
this purpose we start by Fourier-Bessel analysing the given Coulomb function: 

00 

fdq, ~)Yk(f i )  = I, x2 dx Qdq, x)jdxdY*,@) (5.2) 

where the expansion function $q(q, x) is the Coulomb function in momentum space. 
Inserting into this relation the addition theorem for the spherical Bessel function 
(Danos and Maximon 1965) and using equation (3.6) for &(q, x) we obtain: 

(5.3) 

with 2 = (2x + 1 )  1/2 and 

where we must give some prescription to deal with the logarithmic branch Pint x =  ' *  
This is done below. 
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Now we expand the spherical Bessel functions in 7 space in terms of Coulomb 
functions. Using the result of appendix 3: 

we can write equation (5.4) in the form 

Here the integral over x runs from 0 to 1. We have obtained these integration limits by 
splitting up the range of integration in equation (5.4) into the intervals [0, 11 and 
[l, +a) and inverting the latter by x + l /x. Next we change the integration variable x 
to the angle a on the hyperboloid, as introduced in 3 4, using the relation 

2x x2+ 1 
)x2-1)’ Ix”l1 

sinh a = -* cosh =-- 

r( 
(5.7) 

Then, substituting the Legendre functions by hyperspherical functions (see equation 
(4.10)) and the 3 j  symbols by an integral over three spherical harmonics, we can write 
equation (5.3) in the form 

f l ( ~ ,  

In this relation we have interchanged the order of integrations over a, 71 and 7 2 .  This is 
Possible s ine  we have introduced the factor e-aa to ensure convergence at infinity of the 
integral over (Y. Further, by means of this factor we have subsequently defined the 
integrand in equation (5.4) at the singular point x = 1. 

Using the relation 
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and the multiplication theorem of the hyperspherical functions (equation (4.171) the 
integration over (Y is easily carried out and we get: 

fj(q, P I e m ( 6 )  

(5.10) 

(5.11) 

where +(t) is the logarithmic derivative of the function with simple poles at the points 
2 =-N (N=O, L 2 , .  . .). Therefore, the second term in equation (5.10) has singu- 
larities on the real q2 axis (or on the q1 axis), if we go to the limit E + O+. Hence, in order 
to extract the ‘pole terms’ we shiftthe path of integration for q2 by an amount Of +ior 
-i, respectively. Using the relation for E = 0 

we obtain the addition theorem in the following form for p = Ipl +PZ(: 

fzm2 

(5.14) 



An addition theorem for the Coulomb function 917 

with 
x = q2 - q1 + 77 +i, Y = 7 2  + 171- 17 + i 

and 

(5.15) 

(5.15a) 

1 sinh 7n) el+7-71-72) 
A(q5 ")=4 cosh$?r(q-ql -q2) c o ~ h ~ ? r ( q + ~ ~ - ~ ~ ) ~ s ~ ~ ~ ( q  - ~ 7 ~ + 7 ~ ) *  

(5.15 b )  
Equation (5.15) can be written more explicitly. Evaluating the ' S  functions'in (5.15) we 
obtain: 

T711112 = T(2)+ P3' (5.16) 

(5.16a) 

17+i ?)I 171-77 (5.166) 

T(3) = Re d q ~  dT2 A(% 771, &,(v1, d ( f d r l 2 ,  P Z ) [ ~  7; 
(5 .16~)  

The function Tqfllh(pl, p2) can also be obtained in another way if we use equation (5.9) 
CoiTespondingly written for q2. Then, performing essentially the same procedures as 
before, we get: 

p*)+ P3' = Re 

2i 77 q + i  q f i  q1 q2+i  I [ z  11 12 

m m  
77 771 7 2  I-, dm dq2 A(T, 91, nd[ I 11 lz]f~l(nl, ~ 1 )  

x ( ~ ( ~ ( 7 2 ,  PZ)-[1-i?r(q2-i)~(q2-i)li(h(r)2-i, P i ) [  r, li 
(5.17) 

and T'" is still given by (5.15a). In the formulation (5.17) for p2)+ @3) there is only 
One 0(1,3) coefficient depending on 1, II and 12, which enters in the double integral over 
'11 and q2. Its parameters qi are all real and hence the coefficient itself is real. 
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merefore, the computational expense for Tq,~i,~,, can be reduced if we use equation 
(5.17) instead of equations (5.16). It may be of interest to look at equations (5.16) (or 
equation (5.1'7)) in specid cases. When p z  is equal to zero the terms P2) and P 3 ) v a ~ h  
on the right-hand side of equations (5.16). Similarly they vanish if the Coulomb 
parameter 77 equals zero, whereby equation (5.14) goes over into the addition theorem 
for the spherical Bessel function. Thus, for small values of p2 or of 77 the term 
maidy will contribute to the right-hand side of equation (5.15). Otherwise, for 
arbitrary p 2  and r] all terms contribute and have therefore to be computed. nus, 
although the integrations over 771 and 712 converge rapidly, the addition theorem in this 
form is primarily practicable in the context of analytical investigations. For n u e r i d  
applications, however, it is generally more useful to evaluate first the integrals over 
and 772 by contour integration techniques. This will be done in the next section. 

6. The addition theorem for the irregular Coulomb function 

As is shown in appendix 4 the irregular Coulomb function 

hT'(v, P )  = I-I?)(q, P ) / P  (6.1) 
can be written in terms of the regular Coulomb function f1(7, p ) .  Therefore, the results 
of 0 5 for the regular function can be utilized to obtain an addition theorem for the 
irregular function. We start the derivation of the addition theorem for the irregular 
function by evaluating the integrals over v1 and q2 in equation (5.16) by means of 
residue calculations. As an example, the single steps performed in the calculation are 
demonstrated for the first term in equation (5.16~): 

For the evaluation of the double integral over q1 and q2, we have to know the 
asymptotic behaviour of &?)(q, p), &-)(q, p )  and fI(q, p )  in the complex q plane. using 
the asymptotic behaviour of the Whittaker function (Buchholz 1953) we find for the 
Coulomb function for 1711 +cy): 
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where the upper sign has to be taken forFe 7 )  > 0 and the lower sign for Re r) < 0. From 
b e  relations (6.5) it can be seen that hr)(q, p )  tends to zero as Iq)+o;) in the sector 
o>argq>-.rr; and that fI!-)(q,p) tends to zero as I.rl+oo in the sector 
o<arg q < T. Further, by means of equation (2.10) the asymptotic behaviour of the 
function &(q, p )  results from that for f$)(q, p )  and fI!-)(q, p).  

We first evaluate the integral over q1 in fl). From the asymptotic behaviour of the 
irregular functions f$)(q, p )  and f$)(q, p) it follows that the value of the integral over 

is not changed if we close the path of integration with a semi-circle at insnity in the 
lower or upper half-plane, corresponding to the terms with @:’(r),, p l )  and 6!y)(ql, pl ) ,  
respectively. The countour integrals thus obtained are equal to 2.rri times the s u m  of the 
residues of the poles of the function B(q, vl, q2) at 

N1 =o, 1,2, .  . . i q 1  = q - q2*i(2N1 + 1) 
ql = -7 +q2*i(2N1 + 1) 
q1 = q + q2*i(2N1 +1) 

and we get 

where cc stands for complex conjugate. Now we close the path for the integration over 
q2 with a semi-circle at infinity in the lower and upper half-plane, respectively. The 
Only poles with non-vanishing residues of the integrand in equation (6.7) lie at 

q2 = *iN2 N2 = 0,1,2, . . . (6.8) 

since there exist the relations 

i i 3 ~ i ( 2 ~ ~  + N~ + I), p l )  = 0 for 2N1 + N2 3 lI (6.9) 

and 
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Thus the evaluation of e’ with residue calculus, leads to 

X G Y ~  + i ~ 1 + ~ 2 +  11, p l ) ) t ( t + ~ , ,  p2)+~~Z(-iN2, p2)). (6.11) 

The prime at the summation sign indicates that the term with N2 = 0 has to be multiplied 
by one half. A necessary condition for the convergence of the sum is the prescription 
p1 >p2. This restriction can easily be seen recalling the asymptotic behaviour of fie 
regular and the irregular functions for large parameters 7. Next, we use the expansion 
of the irregular Coulomb function hy)(q, p )  in terms of the regular function fl(q, p), 
given in appendix 4: 

(6.12) 

with 

(6.13) 

We insert this relation into equation (6.1 l), where we have to substitute the Coulomb 
parameter 7 by q / x ,  p1 by xpl, and p2 by xp2. By means of the symmetry relations 

(6.14) 

we can extend the range of integration over x up to -a and we get 
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we treat the remaining terms in equation (5.16) analogously and thus find for 

hr)(q, P>ykm(P̂ > 

p =  Ip1 +p2l and p1 > p 2 :  

(6.18) 

with qx = 77 -i(2N1 + N2 + 1). The three sums over Nl and N2 in equation (6.18) can be 
combined into one sum if we employ the following recurrence relation of the Q( 1,3) 
coefficients: 

Further, we utilize the following recurrence relation for the Coulomb functions: 

with U! =T1(q, p )  or fiF)(q, p ) .  Then, after a short calculation, we finally find the 
addition theorem for the irregular Coulomb function hV’(q, p )  in the compact form 
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(&(iN27 p2) +T1z(-iN2? PZ)) (6.21) 
with i j  = 71 -i(2N1 + N 2 +  1) and the restriction p1 > p z .  Again, the prime at the sum 
sign indicates that the term with N2 = 0 has to be multiplied by one half. Remembering 
relation (4.21) one notes that the 0(1,3) coefficient in (6.21) contains the factor 
[1 . . . (li-N;)]-1'2 which is singular for N2 2 12. However, this singularity is cancelled 
by the corresponding factor of the function ff2(*iN2, pz). 

For some purposes it may be convenient to have the addition theorem in a form 
where no differential operator acts on the irregular function @:)(q,pl). Thus, by 
restarting from equation (6.18) and again using relation (6.19) we also formulate the 
addition theorem in the following way: 

h!+)(", P)YT,($) 

Of course, the above equation can also be written in a form analogous to that Of 
.equation (6.21), if relation (6.20) is applied. In this formulation as well as in that Of 
equation (6.22) the term with N2 = 1 requires particular attention. For this parmeter 
value the 0(1,3) coefficients have to be computed with the help of equation (6.19)f 
written for the special case N2 = 1 : 

[2i 1 ",I[" i]+[2i -i O][q i j  i i ]  
0 1  1 I 1  12 0 1 2 1 2 1 1 1  
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We now consider equation (6.22) for special values of the parameters. In the case p = p1 
(i.e. p 2  = O), equation (6.22) must be an identity. Thus, since we have 

&(77, P2) = &.o for p2 = 0 (6.24) 

and consequently the sums over NI and N2 vanish identically, this implies the relation 

2i 77 q + i  q+ i  77 0 
I [ l  1 0  ]=1. (6.25) 

For 7 = 0, according to equations (6.9) and (6.10), again the sums over NI, N2 equal 
zero. In this case, equation (6.22) must go over into the addition theorem for the 
spherical Hankel function and the remaining 0(1,3) coefficients must reduce to one: 

Further, by means of the relation 

fdq, P )  =Re hv’(q, PI ,  

(6.26) 

(6.27) 

taking the real part of equation (6.21) or of equation (6.221, we obtain the addition 
theorem €or the regular Coulomb function in the residue representation. 

The convergence of the sums over Nl and N2 in equations (6.21) and (6.22) 
generally is quite fast for p1 >>p2. However, there is only poor convergence if the 
arguments p1 and p2 are of the same order. In this case it is advisable to use the integral 
representation of the addition theorem (see § 5).  The integral representation (5.14) 
also holds for the irregular function, if on the right-hand side of this equation the regular 
function depending on the larger argument is replaced by the corresponding irregular 
function. 

Appendix 1. 0(1,3) coefficients 

In this appendix we give explicit expression for [T 7,’ 73 for some special values of the 
angular momenta li : 

7 771 712 

[o 0 o l = l  
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Appendix 2. The proof of the orthogonality of the reguiar Coulomb function 

In order to derive the orthogonality relations for the regular Coulomb function (2.131, 
we write down the differential equation for the two functions Fl(q, k ~ )  and Fl-(q’, k’4 :  

-F d2 (77, kr)+(k2-*--)Fl(v, kr )=O 
dr2 ‘ r r2 

) F , . ( ~ ~ ,  k‘r)  = 0. 7 F l f ( q ‘ ,  d2 k‘r)+ ( k ” - T - -  2 V’k’ I’( I‘ + 1) 
dr r r2 

64.9) 

(A.10) 

Multiplying the two equations by Fp(q‘, k’r)  and F1(q kr) respectively, subtracting the 
second from the fkst equation and integrating the resulting equation over r in the 
interval [O, a), we get 

2(77’k’- q k ) +  l’(l’+ 1)- 1(1+ 1) )=o .  (A.11) 
r r2 

lom dr F!<(q’, k’r)Fl(q, kr) 

From this relation the orthogonality of the Coulomb function is easily seen. It remaias 
to determine the normalization factor of the ‘6 function’ in the orthogonalitYrelaQo? 
(2.13)- For this purpose we utilize the general relation for the ‘CodOmb maw 
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7T e b E  
=- (2kf)4(2ki)-4-'[i(kf-kJ- K ] ' ~ - ~ + ~ - '  

sinh ?rt 
X (21i)! I W f  + 1 +hfl 

( li - If + n - 1)!(2 Z, + I)! lr( Zi + 1 + iqil 

X Fz(Zf - Ii + 1 - n, Z, + 1 + iqf, - li - iqi; 2Zf + 2, -24; y, x) 

(2 If) Ir(ii + 1 + iqJl 
(lf - Ii +n- 1)!(2Zi + I>! Ir(2, + 1 +iqf)l 

X 

x F2( li - If + 1 - n, Zi + 1 - iqi, -If + iqf ; 2 4 + 2, -2 If; x, y ) 

xF3(-Zi-iqi7 -If+iqf, li+ 1 -iqi, lf+ 1 +iqf; n + 1 +it; l/x, l / y ) )  

(A.12) 

and t= Tf-qi. 
2ki 2 kf 

= - ki- kf -iK X =  ki - kf - i~ 

With the help of this relation, equations (2.13a, b, c )  are easily proved: 

dr FL(q/k, kr)Fl(q/k', k'r) = kk'@?. I (A.13) 

From equation (A.12) we get: 

X F 3 (  - I'-iT/k, - Z+iq/k', 2 +  1 -iq/k, I +  1 +iq/k'; i t ;  l / x ,  1 / y)). 
(A.14) 

As we have mentioned, it remains to compute the normalization factor of the orthogon- 
relation (2.13~) .  Hence, we take k = k' in all non-singular terms of equation 

(A.14) and get 

S(k - k') 7T 
-_. 7T 1 

lim - '' -2 K - , ~ +  72 (k- k')'+K2 -2k' 
(A.15) 

Which is the desired result. 
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1 
r I1 dr Ft(q, kr)-Ft(T', kr) = kzw/%o. 

From equation (A.12) we obtain 

(A.16) 

xF3(-l-iq,-l+i$, l+l-iq,  l+l+iq ' ;  l + i t ;  l/x, l /y) .  (~ .17)  
Now we let 5 and K tend to zero in all non-singular terms and fhd 

(A.18) 

1 
111 dr Fl(q, kr)7FL'(q,  kr) = kzM$,o. (A.19) 

In accordance with equation (A.ll) it suffices to calculate this integral for I = 1': 

(A.20) 

Appendix 3. Expansion of the spherical Bessel function in terms of Coulomb fnnctiom 

For the expansion of the spherical Bessel function in terms of Coulomb functions we 
make the following ansatz: 

(A.21) 

Using the orthogonality relation (2.13b) of the Coulomb functions and the relation for 
the 'Coulomb monopole matrix element', given by Trautmann and Alder (1970) we 
get: 

gt(q, x> = - I dp pjl(Xp)fl(q, p )  
2 "  
a 0  

2 l-'(l+l)~I'(l+1+i~)~ 
r (21+ 2 )  

= lim - 
€+o+ 7T 

(A.22) 

with 

4x 
xo= - 

( x  - 1)2 + 2. 
The expansion function gl(q, x )  can also be written as a Legendre function of the second 
kind or a hyperspherical function 

gl(q, x )  = z S x ( q )  1 eim, e-iulQ?(-) x 2 +  1 
2x 

( ~ . 2 3 a )  
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(A. 2 3 b) 

kth x = tanh ;a for 1x1 < 1 and l / x  = tanh +a for x > 1. The function Sx(q) is defined in 
equation (3.7). 

We want now to evaluate the integral over q in equation (A.21), which could be 
useful in another context. Defining the function 

(A.24) fI(q, P )  =fl(q, ~)i(e-""vv+ 1 +iq)I) 

we can write equation (A.21) with the help of equation (4.11) in the form 

(A.25) 

The integrand has simple poles at the point q = *iN. By means of contour integration 
equation (A.25) is easily evaluated and we get 

00 d 1 j,(xp) = (-1) 12 -(sinh a)'+' E' S,( (-) -Re &(iiV, p )  
X N=O in? d cosh a sinh a (A.26) 

where the prime at the summation sign indicates that the term with N =  0 has to be 
multiplied by one half. We define a new set of functions 

- 
sinh a' 

The fist members are 

cosh a -Na 

(A.27) 

(A .28~)  

(A.28b) 

2 cosh'a + 1 cosh a +3N-). (A.28~)  
sinh'a S l n h  a 

Accordingly we can write 
OD 

j f ( x p ) =  (-1)z(27r)'~2isinh a N=O c' Sx(iN)PN,f(a) Re fl(iN, p).  64.30) 

f i s  equation can be interpreted as a 'multiplication theorem' for the spherical Bessel 
functions. 

X 
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(A.3 1) 

using the orthogonality relation (2.13~)  of the regular Coulomb function we get 

(A. 3 2 a)  

where we have written the Coulomb functions in the form of Whittaker functions. The 
integral in equation (A.32b) can be solved by means of the general integral formula 
given by Buchholz (1953): 

(A.33) 

where Pab(z) is any kind of Whittaker function. In our case, we get 

(A.34) 

The value of the determinant vanishes at the upper limit, and thus we get a contribution 
from the lower limit only. This leads to 

(A.35) 
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